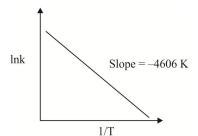


Date Planned ://	Daily Tutorial Sheet-3	Expected Duration : 90 Min		
Actual Date of Attempt ://_	JEE Main (Archive)	Exact Duration :		

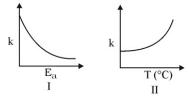
Actu	ual Date	of Atter	npt : / / _	_ JEI	E Main (Archive)	Ex	act Duratio	n :
31.	tempe reaction	erature of on B is tv	reaction A doub reaction B show vice to that of re	ıld be increase	d from 3	00 K so that ra		s if activation	
	(A)	9.84 K	(B)	4.92 K	(C)	2.45 K	(D)	19.67 K	
32 .	Two re	eactions	R ₁ and R ₂ have	e identical pre-	exponent	tial factors. Ac	tivation en	ergy of R ₁ e	xceeds that o
	R ₂ by	y 10kJ n	100^{-1} . If k_1 and	k ₂ are rate co	nstants i	for reactions F	${f R}_1$ and ${f R}_2$	respectively :	at 300 K, ther
	$\ln(k_2$	/ k ₁) is 6	equal to: $(R = 8)$	$.314\mathrm{Jmol}^{-1}\mathrm{K}^{-1}$	¹)				(2017)
	(A)	4	(B)	8	(C)	12	(D)	6	
33.	At 51	8° C, the	rate of decomp	osition of a sai	mple of g	aseous acetal	dehyde, ini	itially at a pr	essure of 363
	At 518° C, the rate of decomposition of a sample of gaseous acetaldehyde, initially at a pressure of 36 Torr, was 1.00 Torr s ⁻¹ when 5% had reacted and 0.5 Torr s ⁻¹ when 33% had reacted. The order of th								
		on is :							(2018)
	(A)	1	(B)	0	(C)	2	(D)	3	, ,
34.	The fo	ollowing r	esults were obta	ined during kir	netic stud	dies of the read	ction; 2A +	B → Produc	ets
		_	[A]	[B]	In	itial Rate of 1	reaction		
	Experiment		(in mol L ⁻¹)	(in mol L-1)		(in mol L ⁻¹ n	nol ⁻¹)		
	I		0.10	0.20		6.93×10	-3		
		II	0.10	0.25		6.93×10	-3		
	III		0.20	0.30	1.386×10^{-2}				
	The ti	The time (in minutes) required to consume half of A is: (2019)							
	(A)	1	(B)	10	(C)	100	(D)	5	(====)
35 .		ie reactio	n. 2A + B → pro						ed. the rate o
		For the reaction, $2A + B \rightarrow \text{products}$, when the concentrations of A and B both were doubled, the rate of the reaction increased from $0.3 \text{ mol } L^{-1} \text{ s}^{-1}$ to $2.4 \text{ mol } L^{-1} \text{ s}^{-1}$. When the concentration of A alone is							
	doubled, the rate increased from 0.3 mol $L^{-1}s^{-1}$ to 0.6 mol $L^{-1}s^{-1}$. (2019)								
		Which of the following statements is correct?							
	(A)	<u> </u>							
	(B)								
		(C) Order of the reaction with respect to B is 2							
	(D)	Total order of the reaction is 4							
36.	For ar	n element	ary chemical rea	action, $A_2 \stackrel{k}{\underset{k}{\longleftarrow}}$	$\stackrel{\stackrel{c_1}{\longrightarrow}}{=_1}$ 2A,	the expressio	on for $\frac{d[A]}{dt}$	is:	(2019)
	(A)		$-k_{-1}[A]^2$		(B)	2k ₁ [A ₂] – k			

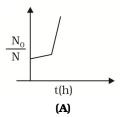
(C)


 $2k_{1}[A_{2}]-2k_{-1}[A]^{2}$

(D)

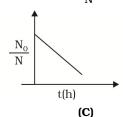
 $k_1[A_2] + k_{-1}[A]^2$


- 37. For the chemical reaction $X \rightleftharpoons Y$, the standard reaction Gibbs energy depends on temperature $T(in\,K)$ as $\Delta_r G^0(in\,kJ\,mol^{-1}) = 120 \frac{3}{8}T$. The major component of the reaction mixture at T is: (2019)
 - **(A)** X if T = 315 K **(B)** Y = 315 K
- Y if T = 300 K (C)
- Y if $T = 280 \,\text{K}$ (D)
- X if T = 350 H
- 38. If a reaction follows the Arrhenius equation, the plot lnk vs $\frac{1}{(RT)}$ gives straight line with a gradient (-y) unit. The energy required to activate the reactant is: (2019)
 - (A) -y unit
- (B) yR unit
- (C) y unit
- **(D)** y/R unit
- 39. Decomposition of X exhibits a rate constant of $0.05 \,\mu\text{g/year}$. How many years are required for the decomposition of $5 \,\mu\text{g}$ of X into $2.5 \,\mu\text{g}$? (2019)
 - **(A)** 40
- **(B)** 20
- **(C)** 50
- **(D)** 25
- **40.** For a reaction, consider the plot of $\ln k$ versus 1/T given in the figure. If the rate constant of this reaction at 400 K is $10^{-5} s^{-1}$, then the rate constant at 500 K is: (2019)


- (A) $10^{-4} \,\mathrm{s}^{-1}$
- **(B)** 10^{-6} s^{-1}
- (C) $4 \times 10^{-4} \,\mathrm{s}^{-1}$
- **(D)** $2 \times 10^{-4} \, \text{s}^{-1}$
- 41. Consider the given plots for a reaction obeying Arrhenius equation (0°C < T < 300°C): (k and E_a are rate constant and activation energy, respectively) (2019)

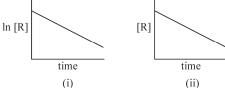
Choose the correct option:

- (A) Both I and II are correct
- **(B)** I is wrong but II is right
- (C) I is right but II is wrong
- **(D)** Both I and II are wrong



- 42. The reaction $2X \to B$ is a zeroth order reaction. If the initial concentration of X is 0.2 M, the half-life is 6h. When the initial concentration of X is 0.5 M, the time required to reach its final concentration of 0.2 M will be: (2019)
 - **(A)** 18.0 h
- **(B)**
- (C) 7.2 h
- **(D)** 9.0 h
- A bacterial infection in an internal wound grows as $N'(t) = N_0 \exp(t)$, where the time t is in hours. A dose of antibiotic, taken orally, needs 1 hour to reach the wound. Once it reaches there, the bacterial population goes down as $\frac{dN}{dt} = -5N^2$. What will be the plot of $\frac{N_0}{N}$ vs. t after 1 hour? (2019)

12.0 h



44. The given plots represent the variation of the concentration of a reactant R with time for different reactions (i) and (ii). The respective orders of the reactions are:

(2019)

- **(A)** 1, 0
- **(B)** 0, 2
- **(C)** 1, 1
- **(D)** 0, 1

45. For the reaction $2A + B \rightarrow C$, the values of initial rate at different reactant concentrations are given in the table below. The rate law for the reaction is: (2019)

$[A](mol L^{-1})$	[B](mol L ⁻¹)	Initial Rate (mol L ⁻¹ s ⁻¹)
0.05	0.05	0.045
0.10	0.05	0.090
0.20	0.10	0.72

(A) Rate = $k[A]^2[B]$

(B) Rate = $k[A]^2[B]^2$

(C) Rate = k[A][B]

- **(D)** Rate = $k[A][B]^2$
- **46.** In the following reaction; $xA \rightarrow yB$

(2019)

(2019)

$$log_{10}\Biggl[-\frac{d\Bigl[A\Bigr]}{dt}\Biggr] = log_{10}\Biggl[\frac{d\Bigl[B\Bigr]}{dt}\Biggr] + 0.3010 \ \ \text{`A'} \ and \ \text{`B'} \ respectively \ can \ be:$$

(A) C_2H_2 and C_6H_6

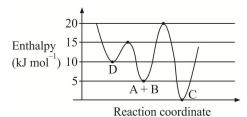
(B) C_2H_4 and C_4H_8

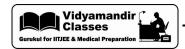
(C) N_2O_4 and NO_2

- (D) n-Butane and Iso-butane
- 47. NO_2 required for a reaction is produced by the decomposition of N_2O_5 in CCl_4 as per the equation $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$. The initial concentration of N_2O_5 is 3.00 $mol L^{-1}$ and it is 2.75 $mol L^{-1}$ after 30 minutes. The rate of formation of NO_2 is : (2019)
 - (A) $2.083 \times 10^{-3} \,\mathrm{mol} \,\mathrm{L}^{-1} \,\mathrm{min}^{-1}$
- **(B)** $4.167 \times 10^{-3} \,\mathrm{mol} \,\mathrm{L}^{-1} \,\mathrm{min}^{-1}$
- (C) $1.667 \times 10^{-2} \,\mathrm{mol} \,\mathrm{L}^{-1} \,\mathrm{min}^{-1}$
- **(D)** $8.333 \times 10^{-3} \text{ mol L}^{-1} \text{ min}^{-1}$
- 48. For the reaction of H_2 with I_2 , the constant is 2.5×10^{-4} dm³ mol⁻¹s⁻¹ at 327 °C and 1.0 dm³ mol⁻¹s⁻¹ at 527 °C. The activation energy for the reaction, in kJ mol⁻¹ is: (2019)

 $(R = 8.314 J K^{-1} mol^{-1})$

- **(A)** 150
- **(B)** 72
- **(C)** 166
- **(D)** 59
- **49.** Consider the given plot of enthalpy of the following reaction between A and B.

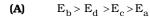

 $A + B \rightarrow C + D$.


97

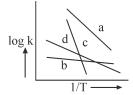
Identify the incorrect statement.

(A) C is the thermodynamically stable product

- **(B)** Activation enthalpy to form C is 5 kJ mol⁻¹ less than that to form D
- **(C)** Formation of A and B from C has highest enthalpy of activation
- **(D)** D is kinetically stable product


- **50.** For a reaction scheme $A \xrightarrow{k_1} B \xrightarrow{k_2} C$, if the rate of formation of B is set to be zero then the concentration of B is given by: (2019)
 - (A) $(k_1 + k_2)[A]$ (B) $(k_1 k_2)[A]$ (C) $k_1k_2[A]$ (D) $(\frac{k_1}{k_2})[A]$
- For the reaction $2H_2(g) + 2NO(g) \rightarrow N_2(g) + 2H_2O(g)$ the observed rate expression is, rate = $k_f[NO]^2[H_2]$.

 The rate expression for the reverse reaction is: (2020)
 - (A) $k_b[N_2][H_2O]^2 / [H_2]$


(B) $k_b[N_2][H_2O]$

(C) $k_b[N_2][H_2O]^2 / [NO]$

- **(D)** $k_b[N_2][H_2O]^2$
- Consider the following plots of rate constant versus $\frac{1}{T}$ for four different reactions. Which of the following orders is correct for the activation energies of these reactions? (2020)

- **(B)** $E_a > E_c > E_d > E_b$
- (C) $E_b > E_a > E_d > E_c$
- **(D)** $E_c > E_a > E_d > E_b$

(2020)

53. For following reactions

$$A \xrightarrow{700 \text{ K}} Product$$

$$A \xrightarrow{500 \text{ K}} Product$$

$$catalyst$$

it was found that the E_a is decreased by 30 kJ/mol in the presence of catalyst. If the rate remains unchanged, the activation energy for catalyzed reaction is (Assume pre exponential factor is same):

- (A) 105 kJ/mol
- **(B)** 198 kJ/mol
- (C) 75 kJ/mol
- **(D)** 135 kJ/mol
- The rate of a certain biochemical reaction at physiological temperature (T) occurs 10^6 times faster with enzyme than without. The change in the reaction energy upon adding enzyme is: (2020)
 - **(A)** +6RT
- **(B)** −6RT
- (C) +6(2.303)RT (D)
- **(D)** −6(2.303)RT
- During the nuclear explosion, one of the products is 90 Sr with half-life of 6.93 years. If $1\mu g$ of 90 Sr was absorbed in the bones of a newly born baby in place of Ca, how much time, in years, is required to reduce it by 90% if it is not lost metabolically_____. (2020)
- A sample of milk splits after 60 min. at 300 K and after 40 min. at 400 K when the population of lactobacillus acidophilus in it doubles. The activation energy (in kJ/mol) for this process is closest to ______.
 (2020)

(Given, R = 8.3 J mol⁻¹K⁻¹,
$$ln\left(\frac{2}{3}\right)$$
 = 0.4, e^{-3} = 4.0)